初衷

在这次疫情处理过程中,了解到在梳理传播链的过程中,很多时候仍然是手工在powerpoint等软件绘制传播链的。采用这种方式的优点能够在图中根据设计者需要加入较多的信息,比如:人员大致位置分布,接触的途径和强度等信息。不足之处在于,在链条上节点(感染者)较少的时候还能够梳理得很明确,但一旦节点达到一定数量,其中关系复杂度将呈几何倍数增加(比如1人传多个,1人与多个感染者有接触之类)。

在这种情况下。单纯的手工整理,将耗费非常多的脑力。最严重的缺点是,当现场流调信息变更,对链条进行修订的时,其中一个节点或链接的变化,会因连锁作用导致整个链条的变化。节点越多,变化的影响范围越大,越复杂,就像整理线头一样。当感染者人数上升到一定数量时,手动整理已经变成了一件难以完成的事情。由于本人对R的热衷,探索了一下能不能使用软件自动化链就是自己懒嘛的方式绘制传播,使用igraphggraphnetworkD3最终效果如下面几张图,个人觉得还是networkD3炫酷的互动效果最好。

具体制作过程

参见我使用的3个包的说明。。。。。详细步骤待补充。

数据

节点数据

节点数据里面只需要包含所有感染者的基本信息,比如编号,姓名,类别等等。

边数据

边数据最基础的要求为,节点数据左右感染者的对应关系,简单说就像Excel两列,第一列from, 第二列to,代表每一行两个感染者的关系,从谁传播到谁,当然这些资料需要辛苦在现场的流调专家们提供。

可视化

igraph

首先使用graph_from_data_frame(d =line, vertices = node, directed = T)将节点和边转换成igraph,就可以直接plot第一张图, 参数自己可以调节。

netwokd3

个人最喜欢的效果,使用igraph_to_networkD3命令,将igraph数据转换一下,就可以使用simpleNetwork,forceNetworksankeyNetwork(画出交互性网络图了。试验了下,手机浏览器一样可以互动,包括拖动节点,放大,移动等,非常棒的体验。

ggraph

ggraph基本研用了ggplot2绘图的方式,画出来的图也相对更漂亮。首先使用tidygraph包将igraph类型的数据转换为ggraph更合适的元数据。然后可以愉快地使用ggplot2的方式画图了。